你好,游客 登录 注册 搜索
背景:
阅读新闻

[Hadoop in Action]第1章 Hadoop简介

[日期:2015-11-24] 来源:博客园精华区  作者: [字体: ]
  • 编写可扩展、分布式的数据密集型程序和基础知识
  • 理解Hadoop和MapReduce
  • 编写和运行一个基本的MapReduce程序

1、什么是Hadoop

Hadoop是一个开源的框架,可编写和运行分布式应用处理大规模数据。

Hadoop与众不同之处在于以下几点:

  1. 方便——Hadoop运行在由一般商用机器构成的大型集群上,或者云计算服务之上;
  2. 健壮——Hadoop致力于在一般商用硬件上运行,其架构假设硬件会频繁地出现失效;
  3. 可扩展——Hadoop通过增加集群节点,可以线性地扩展以处理更大的数据集;
  4. 简单——Hadoop运行用户快速编写出高效的并行代码。

2、了解分布式系统和Hadoop

 

理解分布式系统(向外扩展)和大型单机服务器(向上扩展)之间的对比,考虑现有I/O技术的性价比。

理解Hadoop和其他分布式架构(SETI@home)的区别:

Hadoop设计理念是代码向数据迁移,而SETI@home设计理念是数据迁移。

要运行的程序在规模上比数据小几个数量级,更容易移动;此外,在网络上移动数据要比在其上加载代码更花时间,不如让数据不动而将可执行代码移动到数据所在机器上去。

3、比较SQL数据库和Hadoop

SQL(结构化查询语言)是针对结构化数据设计的,而Hadoop最初的许多应用针对的是文本这种非结构化数据。让我们从特定的视角将Hadoop与典型SQL数据库做更详细的比较:

  1. 用向外扩展代替向上扩展——扩展商用关系型数据库的代价会更加昂贵的
  2. 用键/值对代替关系表——Hadoop使用键/值对作为基本数据单元,可足够灵活地处理较少结构化的数据类型
  3. 用函数式编程(MapReduce)代替声明式查询(SQL)——在MapReduce中,实际的数据处理步骤是由你指定的,很类似于SQL引擎的一个执行计划
  4. 用离线处理代替在线处理——Hadoop是专为离线处理和大规模数据分析而设计的,并不适合那种对几个记录随机读写的在线事务处理模式

4、理解MapReduce

MapReduce是一种数据处理模型,最大的优点是容易扩展到多个计算节点上处理数据;

在MapReduce模型中,数据处理原语被称为mapper和reducer;

分解一个数据处理应用为mapper和reducer有时是繁琐的,但是一旦一MapReduce的形式写好了一个应用程序,仅需修改配置就可以将它扩展到集群中几百、几千,甚至几万台机器上运行。

[动手扩展一个简单程序]

少量文档处理方式:对于每个文档,使用分词过程逐个提取单词;对于每个单词,在多重集合wordcount中的相应项上加1;最后display()函数打印出wordcount中的所有条目。

大量文档处理方式:将工作分布到多台机器上,每台机器处理这些文档的不同部分,当所有机器都完成时,第二个处理阶段将合并这些结果。

一些细节可能会妨碍程序按预期工作,如文档读取过量导致中央存储服务器的带宽性能跟不上、多重集合wordcount条目过多超过计算机的内存容量。此外,第二阶段只有一个计算机处理wordcount任务,容易出现瓶颈,所以可以采用分布的方式运转,以某种方式将其分割到多台计算机上,使之能够独立运行,即需要在第一阶段后将wordcount分区,使得第二阶段的每台计算机仅需处理一个分区。

为了使它工作在一个分布式计算机集群上,需要添加以下功能:

  • 存储文件到许多计算机上(第一阶段)
  • 编写一个基于磁盘的散列表,使得处理不受内存容量限制
  • 划分来自第一阶段的中间数据(即wordcount)
  • 洗牌这些分区到第二阶段中合适的计算机上

MapReduce程序执行分为两个主要阶段,为mapping和reducing,每个阶段均定义为一个数据处理函数,分别称为mapper和reducer。在mapping阶段,MapReduce获取输入数据并将数据单元装入mapper;在reduce阶段,reducer处理来自mapper的所有输出,并给出最终结果。简而言之,mapper意味着将输入进行过滤与转换,使reducer可以完成聚合。

另外,为了扩展分布式的单词统计程序,不得不编写了partitioning和shuffling函数。

在MapReduce框架中编写应用程序就是定制化mapper和reducer的过程,以下是完整的数据流:

  1. 应用的输入必须组织为一个键/值对的列表list(<k1,v1>);
  2. 含有键/值对的列表被拆分,进而通过调用mapper的map函数对每个单独的键/值对<k1,v1>进行处理;
  3. 所有mapper的输出被聚合到一个包含<k2,v2>对的巨大列表中;
  4. 每个reducer分别处理每个被聚合起来的<k2,list(v2)>,并输出<k3,v3>。

5、用Hadoop统计单词——运行第一个程序

  • Linux操作系统
  • JDK1.6以上运行环境
  • Hadoop操作环境

Usage:hadoop [—config configdir] COMMAND

这里COMMAND为下列其中一个:

namenode -format                                             格式化DFS文件系统

secondarynamenode                                          运行DFS的第二个namenode

namenode                                                         运行DFS的namenode

datanode                                                          运行一个DFS的datanode

dfsadmin                                                          运行一个DFS的admin客户端

fsck                                                                  运行一个DFS文件系统的检查工具

fs                                                                     运行一个普通的文件系统用户客户端

balancer                                                           运行一个集群负载均衡工具

jobtracker                                                        运行MapReduce的jobtracker节点

pipes                                                               运行一个pipes作业

tasktracker                                                      运行一个MapReduce的tasktracker节点

job                                                                  处理MapReduce作业

version                                                            打印版本

jar <jar>                                                        运行一个jar文件

distcp <srcurl> <desturl>                                递归地复制文件或者目录

archive  -archiveName NAME <src>* <dest>    生成一个Hadoop档案

daemonlog                                                      获取或设置每个daemon的log级别

CLASSNAME                                                    运行名为CLASSNAME的类大多数命令会在使用w/o参数

时打出帮助信息。

运行单词统计示例程序的命令形式如下:

hadoop jar hadoop-*-examples.jar wordcount [-m <maps>] [-r reduces] input output

编译修改后的单词统计程序的命令形式如下:

javac -classpath hadoop-*-core.jar -d playground/classes playground/src/WordCount.java

jar -cvf playground/src/wordcount.jar -C playground/classes/

运行修改后的单词统计程序的命令形式如下:

hadoop jar playground/wordcount.jar org.apache.hadoop.examples.WordCount input output

代码清单 WordCount.java

1 public class WordCount {
 2  
 3   public static class TokenizerMapper 
 4        extends Mapper<Object, Text, Text, IntWritable>{
 5  
 6     private final static IntWritable one = new IntWritable(1);
 7     private Text word = new Text();
 8  
 9     public void map(Object key, Text value, Context context
10                     ) throws IOException, InterruptedException {
11       StringTokenizer itr = new StringTokenizer(value.toString());   //(1)使用空格进行分词
12       while (itr.hasMoreTokens()) {
13         word.set(itr.nextToken());   //(2)把Token放入Text对象中
14         context.write(word, one);
15       }
16     }
17   }
18  
19   public static class IntSumReducer 
20        extends Reducer<Text,IntWritable,Text,IntWritable> {
21     private IntWritable result = new IntWritable();
22  
23     public void reduce(Text key, Iterable<IntWritable> values, 
24                        Context context
25                        ) throws IOException, InterruptedException {
26       int sum = 0;
27       for (IntWritable val : values) {
28         sum += val.get();
29       }
30       result.set(sum);
31       context.write(key, result);   //(3)输出每个Token的统计结果
32     }
33   }
34  
35   public static void main(String[] args) throws Exception {
36     Configuration conf = new Configuration();
37     String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
38     if (otherArgs.length < 2) {
39       System.err.println("Usage: wordcount <in> [<in>...] <out>");
40       System.exit(2);
41     }
42     Job job = new Job(conf, "word count");
43     job.setJarByClass(WordCount.class);
44     job.setMapperClass(TokenizerMapper.class);
45     job.setCombinerClass(IntSumReducer.class);
46     job.setReducerClass(IntSumReducer.class);
47     job.setOutputKeyClass(Text.class);
48     job.setOutputValueClass(IntWritable.class);
49     for (int i = 0; i < otherArgs.length - 1; ++i) {
50       FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
51     }
52     FileOutputFormat.setOutputPath(job,
53       new Path(otherArgs[otherArgs.length - 1]));
54     System.exit(job.waitForCompletion(true) ? 0 : 1);
55   }
56 }

在(1)的位置上wordcount以默认配置使用了Java的StringTokenizer,这里仅基于空格来分词。为了在分词过程中忽略标准的标点符号,将它们加入到stringTokenizer的定界符列表中:

StringTokenizer itr = new StringTokenizer(value.toString(),” \t\n\r\f,.:;?![]’");

因为希望单词统计忽略大小写,把它们转换为Text对象前先将所有的单词都变成小写:

word.set(itr.nextToken().toLowerCase());

希望仅仅显示出现次数大于4次的单词:

if (sum > 4) context.write(key, result);

6、hadoop历史

创始人:Doug Cutting

2004年左右——Google发表了两篇论文来论述Google文件系统(GFS)和MapReduce框架。

2006年1月——雅虎聘用Doug,让他和一个专项团队一起改进Hadoop,并将其作为一个开源项目。





收藏 推荐 打印 | 录入:elainebo | 阅读:
本文评论   查看全部评论 (0)
表情: 表情 姓名: 字数
点评:
       
评论声明
  • 尊重网上道德,遵守中华人民共和国的各项有关法律法规
  • 承担一切因您的行为而直接或间接导致的民事或刑事法律责任
  • 本站管理人员有权保留或删除其管辖留言中的任意内容
  • 本站有权在网站内转载或引用您的评论
  • 参与本评论即表明您已经阅读并接受上述条款