你好,游客 登录 注册 搜索
背景:
阅读新闻

Hadoop集群应用于大数据分析优势和挑战

[日期:2015-12-15] 来源:极客头条  作者: [字体: ]

  大数据分析在过去几年里非常流行。即便如此,很多组织发现,现有的数据挖掘和分析技术还是不能胜任大数据的处理任务。对于这个question,一个可能的解决方案就是搭建Hadoop集群,但它并不适合所有情况。让我们了解一下使用Hadoop集群的优缺点。

  Hadoop集群是什么?

  Hadoop集群是 一种专门为存储和分析海量非结构化数据而设计的特定类型的集群。本质上,它是一种计算集群,即将数据分析的工作分配到多个集群节点上,从而并行处理数据。

  搭建Hadoop集群的优点

  使用Hadoop集群最大的好处在于它非常适合大数据分析。大数据一般都是分布广泛并且是非结构化的。而Hadoop非常适合这类数据是因为,Hadoop的工作原理 在于将数据拆分成片,并将每个“分片”分配到特定的集群节点上进行分析。数据不必均匀分布,因为每个数据分片都是在独立的集群节点上进行单独处理的。

  Hadoop集群的另外一个优点 在于可扩展性 。和其它任何类型的数据一样,大数据分析面临的一个重要 question 也是数据量的不断增加。而且大数据最大的优势在于可以实时或接近实时地进行分析处理。而Hadoop集群的并行处理能力能明显提高分析速度,但随着要分析的数据量的增加,集群的处理能力可能会收到影响。但令人欣慰的是,通过添加额外的集群节点可以有效的扩展集群。

  Hadoop集群的第三个好处 在于成本 。这一点听起来似乎有些奇怪,毕竟分析大数据是一个企业级的IT活动,一直以来企业级的IT应用从未廉价过。但是,事实证明,Hadoop集群的确是一个高性价比的解决方案。

  Hadoop集群较为廉价有两个主要原因。它所需的 软件是开源 的,这样就可以降低成本。事实上,你可以自由下载Apache Hadoop发行版。同时,Hadoop集群通过支持商用硬件控制了成本。 不必购买 服务器 级硬件 ,便可以搭建一个强大的Hadoop集群。

  Hadoop集群的另一个优点在于 故障容错 。 当一个数据分片发送到某个节点进行分析时,该数据在集群其它节点上会有副本。通过这种方式,即使一个节点发生故障,该节点数据的额外拷贝仍存在于集群内的其它地方,这样,数据仍可以进行分析处理。

  Hadoop集群的缺点

  尽管Hadoop集群有以上众多的优点和好处,但它却并非是对于所有企业都适用的数据分析解决方案。比如某企业的数据量相对较少,即使亟需数据分析也可能不会受益于Hadoop集群。

  使用Hadoop集群的另外一个缺点在于集群解决方案是建立在数据“可分”以及可在独立节点上进行并行处理的基础之上的。如果要做的分析不适应于并行处理环境,那么Hadoop集群就不是完成这项任务的合适工具。

  也许使用Hadoop集群最显著的缺点在于集群的搭建、运维和支持是一个陡峭的曲线。除非恰好在你的IT部门里有Hadoop专家,否则学习如何搭建集群和执行所需的数据分析任务需耗费些时日。

 

  既然如此,我们是否应该搭建Hadoop集群呢?答案取决于你的数据分析需求是否与Hadoop集群功能相符。如果你不确定企业能否受益于Hadoop集群,那么在提交搭建大型集群之前,可以先下载安装Apache Hadoop到多余的硬件上看看效果如何。





收藏 推荐 打印 | 录入:elainebo | 阅读:
本文评论   查看全部评论 (0)
表情: 表情 姓名: 字数
点评:
       
评论声明
  • 尊重网上道德,遵守中华人民共和国的各项有关法律法规
  • 承担一切因您的行为而直接或间接导致的民事或刑事法律责任
  • 本站管理人员有权保留或删除其管辖留言中的任意内容
  • 本站有权在网站内转载或引用您的评论
  • 参与本评论即表明您已经阅读并接受上述条款