你好,游客 登录 注册 搜索
背景:
阅读新闻

实现R与Hadoop联合作业的三种方法

[日期:2016-06-07] 来源:雪晴数据网  作者: [字体: ]

  为了满足用R语言处理pb量级数据的需求,我们需要把它和Hadoop联合起来使用。本文的目的就是阐述实现二者联合作业的不同技术。

  方法一:利用Streaming APIs

Hadoop支持一些 Streaming API来将R语言中的函数传入,并在MapReduce模式下运行这些函数。这些Streaming API可以将任意能在map-reduce模式下访问和操作标准I/O接口的R脚本传入Hadoop中。因此,你不需要额外开启一些客户端之类的东西。如下是一个例子:

Hadoop

  方法二:使用Rhipe包

  Rhipe包允许用户在R中使用MapReduce。在使用这一方法前,要做相应的前期准备工作。R需要被安装在Hadoop集群中的每一个数据节点上,此外每个节点还要安装Protocol Buffers(更多资料请参考 http://wiki.apache.org/hadoop/ProtocolBuffers),Rhipe也需要在每个节点上都可以被使用。

   下面是在R中利用Rhipe应用MapReduce框架的范例:

R包

  方法三:使用RHadoop

  RHadoop是Recolution Analytics下的一个开源库,与Rhipe类似,它的功能也是在MapReduce模式下执行R函数。后续列举的都是该库中的一些包。plyrmr包可以在Hadoop中对大数据集进行一些常用的数据整理操作。rmr包提供了一些让R和Hadoop联合作业的函数。rdfs包提供了一些函数来连接R和分布式文件系统(HDFS)。rhbase包中的函数则能连接R和HBase。

   下面这个例子中,我们会演示如何使用rmr包中的一些函数来让R与Hadoop联合作业。

RR

  方法总结

  总的说来,上述三种方法都能很容易地实现R与Hadoop的联合作业,这样一来R就拥有了在分布式文件系统(HDFS)上处理大数据的能力。但同时,这三种方法也各有利弊。

  关键结论:

  1、使用Streaming APIs最为简单,它的安装和设置都很方便。Rhipe和RHadoop都需要对R进行一些设置,并且也需要Hadoop集群上一些包的支持。但在执行函数方面,Streaming APIs 需要将函数依次map和reduce,而Rhipe和RHadoop允许开发者在R函数中定义并调用MapReduce函数。

  2、与Rhipe和RHadoop不同,使用Streamings APIs也不需要客户端。

 

  3、除此之外,我们也可以使用Apache Mahout,Apache Hive,Segue框架与其他来自Revolution Analytics的商业版R来实现大规模机器学习。





收藏 推荐 打印 | 录入:elainebo | 阅读:
本文评论   查看全部评论 (0)
表情: 表情 姓名: 字数
点评:
       
评论声明
  • 尊重网上道德,遵守中华人民共和国的各项有关法律法规
  • 承担一切因您的行为而直接或间接导致的民事或刑事法律责任
  • 本站管理人员有权保留或删除其管辖留言中的任意内容
  • 本站有权在网站内转载或引用您的评论
  • 参与本评论即表明您已经阅读并接受上述条款