你好,游客 登录
背景:
阅读新闻

【PDF】基于Hadoop的超像素分割算法

[日期:2016-11-25] 来源:计算机应用  作者:王春波 董红斌 印桂生 刘文杰 [字体: ]

  针对高分辨率图像像素分割时间复杂度高的问题,提出了超像素分割算法。采用超像素代替原始的像素作为分割的处理基元,将hadoop分布式的特点与超像素的分块相结合。在分片过程中提出了基于多任务的静态与动态结合的适应性算法,使得Hadoop分布式文件系统(HDFS)的分块与任务分发的基元解耦;在每一个Map节点任务中,基于超像素分块的边界性对超像素的形成在距离和梯度上进行约束,提出了基于分水岭的并行化分割算法。在Shuffle过程的超像素块间合并中提出了两种合并策略,并进行了比较。在Reduce节点任务中优化了超像素块内合并,完成最终的分割。实验结果表明.所提算法在边缘查全率(BR)和欠分割错误率(UR)等分割质量指标上优于简单线性迭代聚类(SLIC)算法和标准分割(Ncut)算法,在高分辨率图像的分割时间上有显著降低。

 

  基于Hadoop的超像素分割算法





收藏 推荐 打印 | 录入:elainebo | 阅读:
相关新闻